
WCET Analysis of ARM Processors using
Real-Time Model Checking

Andreas Engelbredt Dalsgaard Mads Christian Olesen

Martin Toft René Rydhof Hansen Kim Guldstrand Larsen

{andrease,mchro,mt,rrh,kgl}@cs.aau.dk

Department of Computer Science
Aalborg University

Denmark

June 22, 2009



Introduction The METAMOC Method Experiments Future Work Further Information

Our Contribution

Modular method for finding Worst-Case Execution Times

Handles a real-world modern processor

Tested on real programs; the Mälardalen benchmark programs

Efficient implementation

2/23



Introduction The METAMOC Method Experiments Future Work Further Information

Introduction

RTSs need WCETs for all processes, for reliable scheduling

WCETs need to be approximated: Overapproximation, but not
pessimistic

3/23



Introduction The METAMOC Method Experiments Future Work Further Information

The METAMOC Method

4/23



Introduction The METAMOC Method Experiments Future Work Further Information

Prototype Implementation

ARM9TDMI processor core

ARM920T
ARM922T
ARM940T

Five stage pipeline

Separate instruction and data caches

Does not suffer from timing anomalies

Assume local worst-case

5/23



Introduction The METAMOC Method Experiments Future Work Further Information

Prototype Implementation

6/23



Introduction The METAMOC Method Experiments Future Work Further Information

Prototype Implementation

7/23



Introduction The METAMOC Method Experiments Future Work Further Information

Path Analysis

Reconstruct CFG from binary

Construct path model based on CFG

Combine with pipeline, cache and main memory models

Model check combined timed automata

sup: cyclecounter

8/23



Introduction The METAMOC Method Experiments Future Work Further Information

Path Analysis

Timed automaton for every function

Transitions emulate instruction execution

instradr[PFS] = 0,
instrtype[PFS] = INSTR_OTHER,
dataadr[PFS] = INVALID_ADDRESS,
...

loop_counter_1 = 0

...

fib_branch!

i0x50_bx_lr
MORE FUNCTION BODY

i0x4_push_lr_

i0x0_cmp_r0_1

fib_branch?

fetch! fetch!

Functions handled flow-sensitively

9/23



Introduction The METAMOC Method Experiments Future Work Further Information

Path Analysis

Assembly level jumps

fetch!

...

fetch!

fetch!

fetch!

...

loop_counter == loop_bound ...

...

loop_counter++
...

loop_counter < loop_bound

fetch!

10/23



Introduction The METAMOC Method Experiments Future Work Further Information

Cache Analysis

Concrete cache model

Unknown memory block
Write allocate/Write back
No write allocate/Write through
Replacement policy
Size parameters

Always miss cache model

Abstract cache model

Abstract cache analysis like Wilhelm et al.

11/23



Introduction The METAMOC Method Experiments Future Work Further Information

Abstract Cache Analysis

Avoid non-determinism

Smaller state space

Calculate which memory blocks MUST
be in the cache at a CFG-node

At join-points merge the results from
the predecessors

12/23



Introduction The METAMOC Method Experiments Future Work Further Information

Abstract Cache Analysis

12/23



Introduction The METAMOC Method Experiments Future Work Further Information

Abstract Cache Analysis

Implemented using model checking
Clocks and stop watches

Already done
Works well with FIFO replacement policy
Not integrated (difficult)

New data type in UPPAAL

13/23



Introduction The METAMOC Method Experiments Future Work Further Information

Value Analysis

The cache analysis needs
concrete memory
addresses

Registers are used as
base and offset in many
memory accesses

Value analysis:
Find an overapproximation of possible register
values at all execution points of a process

Weighted push-down systems (WPDSs) used for
inter-procedural, control-flow sensitive value analysis

Presented by Reps et al. in
Program Analysis using Weighted Push-Down Systems

14/23



Introduction The METAMOC Method Experiments Future Work Further Information

Value Analysis

WPDS: Push-down system (PDS), weight domain, and
mapping between PDS rules and weight domain elements

Weighted Automata Library (WALi) implements a number of WPDS
algorithms

WPDSs allow taking the inter-procedural control-flow into account

Implemented simple value analysis, using:

Loop unrolling
Simple register-value tracking
No tracking of values in memory
Finds good amount of values for some programs, but could be much
better

15/23



Introduction The METAMOC Method Experiments Future Work Further Information

Pipeline Analysis

Pipeline analysis:
Take the effect of pipelining
into account in order to
determine sharper WCETs

Five stages in the
ARM9TDMI processor core

Stalls due to
inter-dependencies

ARM decode

Thumb decode

Reg. address
decode

Reg. address
decode

Register
read

Register
read

Decode

Writeback

Memory

Memory data access

Execute

ALUShifter

load data writeback
ALU result and/or

Fetch

Fetch instruction
from instruction cache

or main memory

16/23



Introduction The METAMOC Method Experiments Future Work Further Information

Pipeline Analysis

Modelled as a network of timed
automata in UPPAAL

Synchronisation between function
automata and the fetch stage
automaton

Synchronisation between stage
automata for the instructions to
“flow” through the data path

Cyclic stage automata

17/23



Introduction The METAMOC Method Experiments Future Work Further Information

Pipeline Analysis

Time must be bounded for sup: cyclecounter to give non-trivial
guarantees

A signaling system is needed

18/23



Introduction The METAMOC Method Experiments Future Work Further Information

Experiments

Conducted on the concrete implementation for the ARM920T
processor

Examine three qualities:

Size and complexity of processes
How much sharper WCETs are found by taking caching into account
Resource usage (time and memory)

No evaluation of the pipeline

No reference WCETs available

Benchmark programs from the WCET Analysis Project by
Mälardalen Real-Time Research Center

Wide selection of computation tasks
Used to benchmark WCET analysis methods

19/23



Introduction The METAMOC Method Experiments Future Work Further Information

Experiments

The most interesting findings:

Taking the instruction cache into account yields WCETs that are up
to 97% sharper (78% on average at -O2)
Taking the data cache into account yields WCETs that are up to 68%
sharper (31% on average at -O2)
Almost all results are obtained within five minutes

Some programs fail due to

State space explosion (9)
Write to program counter (2)
Floating point operations
Value analysis problems

We are able to analyse 14 out of the 25 non-floating point
benchmarks!

20/23



Introduction The METAMOC Method Experiments Future Work Further Information

Experiments

The most interesting findings:

Taking the instruction cache into account yields WCETs that are up
to 97% sharper (78% on average at -O2)
Taking the data cache into account yields WCETs that are up to 68%
sharper (31% on average at -O2)
Almost all results are obtained within five minutes

Some programs fail due to

State space explosion (9)
Write to program counter (2)
Floating point operations
Value analysis problems

We are able to analyse 14 out of the 25 non-floating point
benchmarks!

20/23



Introduction The METAMOC Method Experiments Future Work Further Information

Experiments

The most interesting findings:

Taking the instruction cache into account yields WCETs that are up
to 97% sharper (78% on average at -O2)
Taking the data cache into account yields WCETs that are up to 68%
sharper (31% on average at -O2)
Almost all results are obtained within five minutes

Some programs fail due to

State space explosion (9)
Write to program counter (2)
Floating point operations
Value analysis problems

We are able to analyse 14 out of the 25 non-floating point
benchmarks!

20/23



Introduction The METAMOC Method Experiments Future Work Further Information

Future Work

Integration of abstract caches

Improve the path analysis

Better value analysis

Explore other ways to model the hardware platform

Support for floating point operations

Support for other hardware architectures

Incorporate schedulability analysis

Reducing schedulability analysis to reachability like in the Schedulability
Analyzer for Real-Time Systems (SARTS) tool by Bøgholm et al.

21/23



Introduction The METAMOC Method Experiments Future Work Further Information

Further Information

The extended abstract, our master’s thesis, the accompanying
source code, and these slides are available at

http://metamoc.martintoft.dk

Questions?
22/23

http://metamoc.martintoft.dk


THE END



THE END


	Introduction
	Introduction

	The METAMOC Method
	The METAMOC Method
	Prototype Implementation
	Path Analysis
	Cache Analysis
	Abstract Cache Analysis
	Value Analysis
	Pipeline Analysis

	Experiments
	Experiments

	Future Work
	Future Work

	Further Information
	Further Information

	Appendix

