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Introduction Challenges Tool-Chain Value Analysis Demo Conclusion

The Problem

Problem

Given a program in executable form, for an ARM9 processor, determine a
safe and tight worst-case execution time (WCET)

Goals:

Model the pipeline and cache(s) of the ARM9 in a precise manner

Make the model modular, such that other ARM9 processors can easily
be modelled
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Real-Time Systems

Real-time systems (RTS) are systems that need to respond to real-life
events in a timely manner

A number of processes with associated WCETs and deadlines

Tasks are periodic or sporadic
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WCET Distribution

Estimates should be on the safe side!

However, too much on the safe side ⇒ inefficient system
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Challenge I: Modern Processors

Modern processors optimise for the average case, using:

Caching: allowing quick access to recently used memory items
Pipelining: executing instructions in parallel
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4/20



Introduction Challenges Tool-Chain Value Analysis Demo Conclusion

Can we be ignorant?

No!

Some processors have “timing anomalies”, i.e.
local worst-case 6⇒ global worst-case

Even without “timing anomalies” assuming the local worst-case can
give an over-approximation by a factor 30

The ARM9 processor does not exhibit “timing anomalies”

Quicker analysis, less overapproximation

Processors without “timing anomalies” are sufficient for most
real-time systems
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Challenge II: Making the Analysis Modular

A modular analysis allows more flexibility, e.g. how would this program
perform:

. . . if the cache was larger?

. . . with an extra processor core?

. . . on an entirely different processor?

And different accuracy/performance tradeoffs:

Abstract interpretation for (abstract) cache analysis

Model checking for (concrete) cache analysis

Use simple always-miss cache, if no need to do more precise analysis
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Tool-Chain Overview
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Tool-Chain Overview
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Overview of Our Model
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Path Analysis

Timed automaton for every function

Transitions emulate instruction execution

0x00 cmp r0, 1
0x04 push lr
... ...
0x50 bx lr

fib_branch?fib_branch!

fetch!fetch!

i0x0_cmp_r0_1

MORE FUNCTION BODY

instradr[PFS] = 0,
instrtype[PFS] = INSTR_OTHER,
dataadr[PFS] = INVALID_ADDRESS,
...

...

i0x50_bx_lr

loop_counter_1 = 0

i0x4_push_lr_

Functions handled flow-sensitively
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Cache Analysis

ARM9: Separate data and instruction caches
16 kB in size, 64-way associative, 8 words (32 byte) per line
Write-through and write-back policies
Pseudo-random and round-robin replacement policies

Modelled concretely as timed automata in UPPAAL
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Value Analysis

The cache analysis needs
concrete memory
addresses

Registers are used as
base and offset in all
memory accesses

Value analysis:
Find an over-approximation of possible register
values at all execution points of a process

Weighted push-down systems (WPDSs) used for inter-procedural,
control-flow sensitive value analysis

Presented by Reps et al. in Program Analysis using Weighted
Push-Down Systems
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Weighted Push-Down Systems

Use the PDS-stack as call-stack:

Sequential: 〈p, nmain〉 ↪→ 〈p, n2〉
Function call: 〈p, n4〉 ↪→ 〈p, n8n5〉
Function return: 〈p, n12〉 ↪→ 〈p, ε〉

Each rule has an associated weight, describing the effect of the transition.
Weights can be:

Combined (“join”): w1 ⊕ w2 = w3

Extended (sequential progression): w1 ⊗ w2 = w3

The effect of executing a program to a set of configurations (T ) (“Meet
over all paths”):⊕
{w1 ⊗ . . .⊗wn|w1, . . . ,wn is the weights associated with a path of rules

leading to a configuration in T }
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Our Value Analysis

Implemented simple value analysis, using:

Loop unrolling

Simple (syntactical) register-value tracking

No tracking of values in memory

Finds good amount of values for some programs, but could be much
better

13/20



Introduction Challenges Tool-Chain Value Analysis Demo Conclusion

Our Value Analysis

Weights = functions representing the effect of an instruction or a
sequence of instructions, e.g.:

w1

(
r0
r1

)
=

(
“r1 + 2”

id

)
, w2

(
r0
r1

)
=

(
id

“r0 ∗ 2 + r1<<3”

)
Special values: id, ⊥ and >
Combine and extend handled syntactically (string equality, and string
replacement)
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Implementation = WALi + Python

The open source Weighted Automata Library (WALi) implements a
number of WPDS algorithms

Easy to extend with e.g. new weight domains

Our weights are, very conveniently, valid Python expressions

Process automata are annotated with the results

fetch!

i0x8330_push_lr_

...
dataadr[PFS] = (loop_counter_33652 == 0) ?
    127992 : INVALID_ADDRESS,
...
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Disassembler — Dissy
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WCET Guarantee in Three Easy Steps

Demo

17/20



Introduction Challenges Tool-Chain Value Analysis Demo Conclusion

Experiments

Evaluated on the Mälardalen WCET benchmarks

The most interesting findings:

Taking the instruction cache into account yields WCETs that are up
to 97% sharper (78% on average at -O2)
Taking the data cache into account yields WCETs that are up to 68%
sharper (31% on average at -O2)
Almost all results are obtained within five minutes

Some programs fail due to

State space explosion (6)
Write to program counter (2)
Floating point operations
Value analysis problems

We are able to analyse 17 out of the 25 non-floating point
benchmarks!
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Conclusion - Future Work

Prototype implementation successful

UPPAAL provides a good framework for modularising the models

The analysis times seem acceptable

Better path analysis

Precise value analysis essential for tight bounds (work in progress)

Modelling the stack
Modelling memory regions

Support other typical embedded processors:

ARM7 (3-stage pipeline, cache)
Atmel AVR 8bit (3-stage pipeline, no cache, 1-2 cycle instructions)
H8/300 (old Lego Mindstorms)

Modelling the cache abstractly
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Our master’s thesis, the accompanying
source code, and these slides are available at

http://metamoc.martintoft.dk

Thank you for your attention!

http://metamoc.martintoft.dk
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