Modular WCET Analysis of ARM Processors

Andreas Engelbredt Dalsgaard
Mads Christian Olesen
Martin Toft
René Rydhof Hansen
Kim Guldstrand Larsen

Introduction
[]

The Problem

Problem
Given a program in executable form, for an ARM9 processor, determine a

safe and tight worst-case execution time (WCET)

Goals:
@ Model the pipeline and cache(s) of the ARM9 in a precise manner

@ Make the model modular, such that other ARM9 processors can easily

be modelled

1/20

Introduction
L]

Real-Time Systems

@ Real-time systems (RTS) are systems that need to respond to real-life
events in a timely manner
@ A number of processes with associated WCETs and deadlines

@ Tasks are periodic or sporadic

Input Output Environment

O

2/20

Introduction
[]

WCET Distribution

Distribution of times
A

SAFE

SN

>

O decmmccccccceaaaaaaa.

1
0 Maximal observed WCET Upper Time
execution time timing
bound

@ Estimates should be on the safe side!

@ However, too much on the safe side = inefficient system

3/20

Challenges
[]

Challenge |: Modern Processors

Modern processors optimise for the average case, using:

Caching: allowing quick access to recently used memory items
Pipelining: executing instructions in parallel

Main Execute
Cache CPU Feteh
M emo ry Fetch instruction Shifter ALU
from instruction cache
or main memory ‘
mo ml
‘ Memory
ml mo Decode
ARM decode Memory data access
m2 m2 Reg. address Register
decode read ‘
m3 Thumb decode Writeback
Reg. address Register
. decode read ALU result and/or
mé4 Size: ~16-32 Kb load data writeback
Access-time: 1 cycle

Size: ~128 Mb
Access-time: ~33 cycles

4/20

Challenges
[]

Can we be ignorant?

No!

@ Some processors have “timing anomalies”, i.e.
local worst-case % global worst-case

@ Even without “timing anomalies” assuming the local worst-case can
give an over-approximation by a factor 30

The ARM9 processor does not exhibit “timing anomalies”
@ Quicker analysis, less overapproximation

@ Processors without “timing anomalies” are sufficient for most
real-time systems

5/20

Challenges
L]

Challenge II: Making the Analysis Modular

A modular analysis allows more flexibility, e.g. how would this program

perform:
o ...if the cache was larger?
@ ...with an extra processor core?

@ ...on an entirely different processor?

And different accuracy/performance tradeoffs:
@ Abstract interpretation for (abstract) cache analysis

@ Model checking for (concrete) cache analysis

@ Use simple always-miss cache, if no need to do more precise analysis

6/20

Tool-Chain
L]

Tool-Chain Overview

Annotated
Executable

disassemble
(objdump, Dissy)

ARM assembly

Pipel inebl
(UPPAAL model)

Main

Memo ryBI
(UPPAAL model)

Cache specs.BI

ARM-to-UPPAAL

Control Flow Graph

(UPPAAL model) combine
. - v
value analysis| Complete model
(WALI)

(UPPAAL model)

y
generate
(cache-gen)

Caches
(UPPAAL model)

model check
(UPPAAL)

7/20

Tool-Chain
L]

Tool-Chain Overview

Annotated
Executable

disassemble
(objdump, Dissy)

ARM assembly

Pipeli neBI
(UPPAAL model)

Main Memo rybl
(UPPAAL model)

Cache specs |Sl

ARM-to-UPPAAL

Control Flow Graph

(UPPAAL model) combine
. - v
value analysis| Complete model
(WALI)

(UPPAAL model)

y
generate
(cache-gen)

Caches
(UPPAAL model)

model check
(UPPAAL)

7/20

Tool-Chain
L]

Tool-Chain Overview

Annotated
Executable

disassemble
(objdump, Dissy)

ARM assembly

Pipel inebl
(UPPAAL model)

Main

Memo ryBI
(UPPAAL model)

Cache specs.BI

ARM-to-UPPAAL

Control Flow Graph

(UPPAAL model) combine
. - v
value analysis| Complete model
(WALI)

(UPPAAL model)

y
generate
(cache-gen)

Caches
(UPPAAL model)

model check
(UPPAAL)

7/20

Tool-Chain
L]

Tool-Chain Overview

Annotated
Executable

disassemble
(objdump, Dissy)

ARM assembly

Pipel inebl
(UPPAAL model)

Main

Memo ryBI
(UPPAAL model)

Cache specs.BI

ARM-to-UPPAAL

Control Flow Graph

(UPPAAL model) combine
. : \ 4
I ENElE Complete model
(WALI)

(UPPAAL model)

y
generate
(cache-gen)

Caches
(UPPAAL model)

model check
(UPPAAL)

7/20

Tool-Chain
L]

Tool-Chain Overview

Annotated
Executable

disassemble
(objdump, Dissy)

ARM assembly

Pipel inebl
(UPPAAL model)

Main

Memo ryBI
(UPPAAL model)

Cache specs.BI

ARM-to-UPPAAL

Control Flow Graph

(UPPAAL model) combine
. - v
value analysis| Complete model
(WALI)

(UPPAAL model)

y
generate
(cache-gen)

Caches
(UPPAAL model)

model check
(UPPAAL)

7/20

Tool-Chain
L]

Tool-Chain Overview

Annotated
Executable

Pipelinebl Main Memorybl Cache specs.BI
(UPPAAL model) (UPPAAL model)

\ 4

ARM-to-UPPAAL

y
generate
(cache-gen)

disassemble
(objdump, Dissy)

Control Flow Graph . Caches
(UPPAAL model) combine (UPPAAL model)

ARM assembly

A v
value analysis Complete model|)| model check
(WALI) (UPPAAL model) (UPPAAL)

7/20

Tool-Chain
L]

Tool-Chain Overview

Annotated
Executable

disassemble
(objdump, Dissy)

ARM assembly

Pipel inebl
(UPPAAL model)

Main

Memo ryBI
(UPPAAL model)

Cache specs.BI

ARM-to-UPPAAL

Control Flow Graph

(UPPAAL model) combine
. - v
value analysis| Complete model
(WALI)

(UPPAAL model)

y
generate
(cache-gen)

Caches
(UPPAAL model)

model check
(UPPAAL)

7/20

Tool-Chain
[]

Overview of Our Model

Pipeline

Caches

RAM

' instrCacheWwrite!

function: main function: fib
fetch! fetch! fetch! fetch!
OO0 | | - -
Fetch stage Decode stage Execute stage Memory stage Writeback stage
fetch? decode? Q execute? memory? writeback?
' ' ' '
decode! H execute! H memory! writeback! H
, / , /
€ B | e VI . € A | e VI .
Instruction Cache Data Cache
i ite? i ? ite? ?
Q:mstrcacheWnte = instrCacheRead =Q Q:dataCacheerte.mdataCachEREad.=o
'

v dataCacheMM!
"

'
instrCacheRead! | dataCacheWrite! dataCacheRead! |
. .
B i > €= R >) EEEEEE T °
Main Memory
QAdatacaCheMM7 A instrCacheMM? ‘Q
< >
' '
H instrCacheMM! |

Tool-Chain
[]

Path Analysis

@ Timed automaton for every function

@ Transitions emulate instruction execution

fib_branch!
0x00 cmp 10, 1 ()
0x04 push 1r fetch!
0x50 bx 1r

i0x50_bx_Ir

@ Functions handled flow-sensitively

fib_branch?
loop_counter_1=0
i0x0_cmp_r0_1

fetch!

instradr[PFS] = 0,

instrtype[PFS] = INSTR_OTHER,
dataadr[PFS] = INVALID_ADDRESS,

i0x4_push_Ir_

9/20

Tool-Chain
L]

Cache Analysis

@ ARMO: Separate data and instruction caches
e 16 kB in size, 64-way associative, 8 words (32 byte) per line
e Write-through and write-back policies
e Pseudo-random and round-robin replacement policies

@ Modelled concretely as timed automata in UPPAAL

Main Cache
Memory Memory
m } Cache set 1
my
s } Cache set 2
mgy
2l } Cache set 3
Me
: } Cache set 4

10/20

Value Analysis

Value Analysis

@ The cache analysis needs . R 1
1 1
concrete memory A4 N 4
ARM assembly f¢ |Control Flow Graph| __
addresses y (UPPAAL model) P >

o Registers are used as
base and offset in all
memory accesses

value analysis|
(WALI)

o Value analysis:
Find an over-approximation of possible register
values at all execution points of a process

o Weighted push-down systems (WPDSs) used for inter-procedural,
control-flow sensitive value analysis

@ Presented by Reps et al. in Program Analysis using Weighted
Push-Down Systems

11/20

Value Analysis
°

Weighted Push-Down Systems

Use the PDS-stack as call-stack:
e Sequential: (p, Nmain) — (p, n2)
e Function call: (p, ns) — (p, ngns)
e Function return: (p, n12) < (p,€)

Each rule has an associated weight, describing the effect of the transition.
Weights can be:

e Combined (“join"): w1 & wo = w3
e Extended (sequential progression): w; ® wo = ws

The effect of executing a program to a set of configurations (T) (“Meet
over all paths”):

P{w1 @ ... wy|wa, ..., w, is the weights associated with a path of rules
leading to a configuration in T }

12/20

Value Analysis
e0

Our Value Analysis

Implemented simple value analysis, using:

@ Loop unrolling

e Simple (syntactical) register-value tracking
@ No tracking of values in memory
°

Finds good amount of values for some programs, but could be much
better

13/20

Value Analysis
oe

Our Value Analysis

@ Weights = functions representing the effect of an instruction or a
sequence of instructions, e.g.:

W ny\ _ “n+2" W ny _ id
! n id ’ 2 n) \“"rgx2+4 rn<<3"

@ Special values: id, L. and T

e Combine and extend handled syntactically (string equality, and string
replacement)

14/20

Value Analysis
[]

Implementation = WALi + Python

@ The open source Weighted Automata Library (WALIi) implements a
number of WPDS algorithms

o Easy to extend with e.g. new weight domains
@ Our weights are, very conveniently, valid Python expressions

@ Process automata are annotated with the results

i0x8330_push_Ir_
fetch!

détaadr[PFS] = (loop_counter_33652 == 0) ?
127992 : INVALID_ADDRESS,

15/20

Value Analysis
L]

Disassembler — Dissy

iS5y 2 HioTe/mChTo/DAT6/SVH W e tlbench)Web) matmultmatml

Fle Navigation Options Tools Help

Lookup ~ | Highlight |

Address size | Label =
0x00008340 84 RandomInteger
crovemss a0 itistize [

0x000083d0 120 Multiply
0x00008448 48 Test

Address |bo [b1 [b2 [Instruction fo |f1 |f2 |Target intormsHon]Boxg
0X00008394 push {r4, rs, r6, lr} str ro, [r4, r5]
Store Register
0x00008398 mv 1S, ro
0x0000839¢ mov. r6, #0 [Combined &
Values (hex)
mov ra, #0 0 [TA
bl 8340 Randoninteger [rL [N/A
2 [NA
str ro, [ra, rs) 5
0x0, 0x4, 0x8, 0xc, 0x10, 014,
add ra,ra, 44 0x18, 0x1c, 0x20, 0x24, 0x28,
cmp ra, #30 0x2¢, 0x30, 0x34, 038, 0x3c,

0x00008320

0x000083a4
0x000083a8
0x000083ac
0x000083b0

oxoo0Esba @
0x000083b8
0x000083bc

bne 83a4 d 2 0x4, 0x8, Oxc, 0x10, 0x14, 0x18,
add 6, e, #1 0x1c, 0x20, 0x24, 0x28, 0x2c,

cp 16, #20 0x44, 0xd8; Oxdc, 0x0, 0xd, Ox8,

x14, 1c,
add rs, rs, #80 r4 | 0x20, 0x24, 0x28, 0x2¢, 0x30,
bre 83a0 ;@loop_bound 2 a4,

0x000083c0

0x000083c4
0x000083cE pop {ra, rs, r6, lr} 0x10, 0x14, 0x18, Ox1c, 0x20,
ox0o0083CC bx r 0x38, Ox3c, 0x40, Oxdd, 04,

0x28, 0x2c, 0x30, 0x34, 0x38,
X3¢, 040, 0x4d, 0xa8, Oxdc

A

0x0, 0x0, 00, 0x0, 0x0, X0,
0x0, 0x0; 00, 00, 0x0, X0,
0x0, 0x0, 00, 00, 0x0, X0,
0x0, 0x0, 01, 0x1, Ox1, Ox1,
01, 0x1, 01, 01, Ox1, Ox1,
0, 01, Ox1, Ox1, Ox1, Ox1,
0, 0x1, 01, 0x1, 0x2, 0x2,
0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
16 |0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
0x3. 0x3. 0x3, 0x3. 0x3. 0x3 2

16/20

WCET Guarantee in Three Easy Steps

Demo

17/20

Conclusion
[]

Experiments

@ Evaluated on the Malardalen WCET benchmarks

18/20

Conclusion
[]

Experiments

@ Evaluated on the Malardalen WCET benchmarks

@ The most interesting findings:
e Taking the instruction cache into account yields WCETs that are up
to 97% sharper (78% on average at -02)
o Taking the data cache into account yields WCETs that are up to 68%
sharper (31% on average at -02)
e Almost all results are obtained within five minutes

18/20

Conclusion
[]

Experiments

@ Evaluated on the Malardalen WCET benchmarks

@ The most interesting findings:
e Taking the instruction cache into account yields WCETs that are up
to 97% sharper (78% on average at -02)
o Taking the data cache into account yields WCETs that are up to 68%
sharper (31% on average at -02)
e Almost all results are obtained within five minutes

@ Some programs fail due to
State space explosion (6)

o Write to program counter (2)
o Floating point operations !

e Value analysis problems

'need to manually find good loop-bounds for very optimised assembler

18/20

Conclusion
[]

Experiments

@ Evaluated on the Malardalen WCET benchmarks

@ The most interesting findings:
e Taking the instruction cache into account yields WCETs that are up
to 97% sharper (78% on average at -02)
o Taking the data cache into account yields WCETs that are up to 68%
sharper (31% on average at -02)
o Almost all results are obtained within five minutes
@ Some programs fail due to
State space explosion (6)
o Write to program counter (2)
o Floating point operations !
e Value analysis problems

@ We are able to analyse 17 out of the 25 non-floating point
benchmarks!

'need to manually find good loop-bounds for very optimised assembler

18/20

Conclusion
L]

Conclusion - Future Work

Prototype implementation successful

UPPAAL provides a good framework for modularising the models

The analysis times seem acceptable

Better path analysis

Precise value analysis essential for tight bounds (work in progress)

e Modelling the stack
e Modelling memory regions

Support other typical embedded processors:
o ARMT (3-stage pipeline, cache)
o Atmel AVR 8bit (3-stage pipeline, no cache, 1-2 cycle instructions)
o H8/300 (old Lego Mindstorms)

o Modelling the cache abstractly

19/20

- - e = [N}
- RBCalllo =WCET Analyer: (e
AT Platforms Name: [ARMS20
ARMS20T : -
. un arm-angstrom-linux-gnueabi-
Hardware Platform: ARMO22T Objdump: g 0 |
ARMS20T v 5 preferences au
ARME4OT Pipeline; | ARMITOM! %
THROUGH 1O =
% P \
325128WTNVAFFO | 5

Instruction Cache:

DataCache: 3255128 WBMWAFFO | %

4k add « apply | Bd close

(= Cathe (=]

Block size: [EE]
cachelines: 512
Cachesets: |2
write Miss: No Write Allocate v
Wite Hit: wite Through v
oo Replacement policy: | FIFC. v

el ox

@ Our master’s thesis, the accompanying
source code, and these slides are available at
http://metamoc.martintoft.dk

Thank you for your attention!

http://metamoc.martintoft.dk

© Introduction
@ The Problem
@ Real-Time Systems
e WCET Distribution

© Challenges
@ Challenge I: Modern Processors

@ Can we be ignorant?

o Challenge Il: Making the Analysis Modular
© Tool-Chain

@ Tool-Chain Overview

@ Overview of Our Model

@ Path Analysis

@ Cache Analysis
@ Value Analysis

@ Value Analysis

@ Weighted Push-Down Systems

@ Our Value Analysis

@ Implementation = WALi + Python
@ Disassembler — Dissy

© Demo

@ WCET Guarantee in Three Easy Steps

@ Conclusion
@ Experiments
@ Conclusion - Future Work

20/20

	Introduction
	The Problem
	Real-Time Systems
	WCET Distribution

	Challenges
	Challenge I: Modern Processors
	Can we be ignorant?
	Challenge II: Making the Analysis Modular

	Tool-Chain
	Tool-Chain Overview
	Overview of Our Model
	Path Analysis
	Cache Analysis

	Value Analysis
	Value Analysis
	Weighted Push-Down Systems
	Our Value Analysis
	Implementation = WALi + Python
	Disassembler --- Dissy

	Demo
	WCET Guarantee in Three Easy Steps

	Conclusion
	Experiments
	Conclusion - Future Work

	Appendix

